Be Adaptive, Avoid
Overcommitting

Zahra Jafargholi, Chethan Kamath, Karen Klein,
llan Komargodski, Krzysztof Pietrzak and Daniel Wichs

AARHUS
/ P UNIVERSITY

== CORNELL
) TECH

NY Crypto Day, September 2017

s

I'matituie o f Seience and Technolo ay

g4 AUSTRIA

Ve N
./,;(,2‘ 71 \‘%‘.\‘
AN YA . .
=09 Northeastern Universit
"-fr,v T Tj“/‘i‘/
c’zt_f,@\/

Y, {'i};{(\“«"’

Selective vs. Adaptive Security

* Selective security:
e Adversary has to committo some or all of its choices ahead of time

* Not very realistic

* Easier to get _
* Adaptive security:

* Adversary can make various choices during the course of the attack

* More realistic

* Harder to get c :

Modular reduction

Recent Work & Our Results to pebbling &

guessing arguments

Several recent works showing that schemes actually satisfy adaptive security:
* Generalized selective decryption (GSD) [PanjwaniO7,FJP15]

* Constrained PRFs [FKPR14] Very long and technical

e Garbled circuits [JW16]

\' that f
Similar framework by ague consensus that proo

Ananth et al [TCC 2016]

techniques are related but no
clear understanding

* A framework that connects these works and allows us to present them in a
unified and simplified fashion

* New result for adaptive security of Yao's secret sharing scheme

The Hybrid Argument & Random Guessing

* Let (; and and G be two adaptive game

* Let H; and Hy be their selectivized versions where the adversary
commitstow € {0,1}"

* Assume that there is some sequence H; = Hy, Hy, ..., H, = Hp such
that we can show that H; and H;, ; are indistinguishable.

* Then, (G, and G are indistinguishable with security loss 2™¢.

Adaptive
Games

Selective
Games

The Main Idea Underlying Our Framework

* Devise a sequence of hybrids such that to prove their indis. it is
enough for the adversary to commit to h(w) € {0,1}"", m < n

* May be a different h for every pair of hybrids
* Across all hybrids we may need to know all of w

* Security loss is 2 ¢ «< 2™¢

Adaptive .
Games GR
Selective 2,1

Games
.

The GSD Problem [PanjwaniO7]

* Have many secret keys k4, ..., k,, and adversary can: (k) (ko)

* Ask for Enc(k;, k;) --- Encryption query \ ‘ / l
* Ask to get k; --- Corruption query

* Make a challenge on key k; --- Challenge @ @
* Decide whether it’s real or random l /

* Goal: distinguish between the two cases
* No cycles

* Key is not corrupted Directly corrupted or
is reachable from such

The GSD Problem — Selective Security

* Graph and all queries are known ahead of

time \‘/‘

* Design 1% hybrids where in each replace
one honest encryption with a bogus one l /
* Each pair is indistinguishable by IND-CPA
What about

* Security loss is n° . .
adaptive security?

The GSD Problem — Adaptive Security

* Can reduce to the selective case by
guessing the graph (n? bits)

. . 2
e Security loss is n? - 2™

Known results:
* The graph is of depth d

e Lossis (2n)¢ [Panjwani07]

 The graph is a tree
e Lossis n3°8™ [FIp15]

* The graph is a path

e Lossisn

p

.

Can prove adaptive
security without
losing so much?

>

4

logn [FJP15] O—(O—O—H—(D—O—O—D—

GSD on a PATH

* There is a path of length n & some permutation o
* Adversaries queries are of the form Enc(a(i — 1), a(i))

* The challenge is for k)

* Know the permutation => know all queries.
* Know the order in which we replace ciphertext with bogus ones.

@
®

GSD on a PATH

* Any hybrid is defined by a path where some
edges have black pebbles

* A pebble means that the corr. encryption
qguery is replied with bogus

Enc(ky(p),Ko(isn)) = Enc(kqq),T)

* Goal is to move from no pebble to the case
that only the (n — 1, n) edge has a pebble

* This is exactly the “random” game

e Pebbling rules:
* Put/remove pebble on the source (0,1) edge

* Put/remove pebble on (i,i + 1) if (i — 1,i) has
one.

©,

®

D —D—D—E)—)
NV AN AN AN

®

0

Do)

GSD on a PATH

* In the adaptive case we don’t know the
permutation.

* Need to guess the edge where there’s a pebble

e Unfortunately, # of pebbles is too large so
guessing Is too expensive

Goal: Find a pebbling strategy with
not so many moves and as few as
possible pebbles.

Loss will be £nP
£ - # of hybrids
p —max # of pebbles

@080 H—O—(O—O—®
©-0-(0-0:(2)-0:()-8:()—(D—(D—(D-#(5)
O—=0—=O—=0—=O—-E—O—0*®

O—(O—(D)—=—(O)—O—®)

GSD on a PATH

* Recursive pebbling:

 Pebble the middle

N AN

* Pebble the right-most vertex
 Remove the middle pebble

* logn + 1 pebbles & 3'°8™ moves

nlog n . Blog n

3

(D)—(2)
A2

®
©

~y
~y

Loss is

3

(D)—(2)
Y

J} \T

()—(5)
A \

A2 A3 4)

(1)

0)

Secret Sharing

 Dealer has a secret S

* Gives to users shares Il ..., I1,
* The shares are a probabilistic function of S

e A subset of users X is either qualified or unqualified
e Authorized sets form a monotone access structure

Goal:

 Aqualified X can reconstruct S based on their shares.

 An unqualified X cannot gain any knowledge about S.
| J \y J

Perfect / Computational

authorized

unauthorized

Objective

Selective Secu) PriAdvwins &unqualifiedl, o Secyrity
< > + negl(1)

Sample § « {0,1} Choose . Sample S < {0,1}
Generate shares {iy,....Ix} | Generate shares
..o, _ m,..n,
(1, sl i [€ [n]
H11;) HE’_C c Hi IR :
Adv wins if ¥ Adv wins if S’

s'=§ - S'=S§

Our Result For Yao’s Scheme

Theorem [Adaptive Security Loss in Yao’s Scheme]:

Given an access structure described by a Boolean circuit with
fanin k;, and fanout k_ ; with s gates and depth d,

the loss in Yao’s scheme is

Zd(log s+log ki) . (Zkin)Zd . kout

~

S0(d)

Yao’s Scheme

Assume fanin and fanout 2.
* Label the output wire with the secret

* Label all wires in the circuit from root to inputs
* The labels of the inputs are given to the corresponding parties

1. Sample SKE key k

2. If AND:
One-time pad & Give each party:
3. If OR: E 4
A an(1)
Duplica Enc,;, (£,)

4. Encrypt the out
labels under k&

Proof of Selective Security

Give each party:
Ency (£1)

Ency (£7)

* VVia a sequence of hybrids.
 Slowly replace ciphertexts with bogus ones

* We can do this for every gate for which the adv cannot compute the
corresponding key

 When we do this to output gate = shares are indep. of secret
* How do we know who are these gates?
 Selective security: adv commits to his set of parties ahead of time!

[Seems inherent to know the set in order to devise such a sequence]
* Such a sequence exists since chosen set is unqualified

Proof of Adaptive Security

* Devise a new sequence of hybrids.

* Hybrid H; corresponds to a pebbling configuration in which every gate
is either pebbled or not.

* Pebbled gate & bogus ciphertext

Shares indep.

* Unpebbled gate & real ciphertext of secret

First Hybrid Last Hybrid |

All gates j\> © 0 oo j\> Only root

unpebbled gate pebbled

Proof of Adaptive Security

* Hybrid H; corresponds to a pebbling configuration in which every gate
is either pebbled or not.

* From hybrid H; to hybrid H;,, via pebbling rules:

* Place/remove a pebble on AND gate for which at least one input is connected
to a pebbled gate

* Place/remove a pebble on OR gate for which all inputs are connected to

— -
—~ —~

Proof of Adaptive Security

Main idea:
* In order to move from H; to H;,, ho need to know the corrupted set,
but only the pebble configurations in these two hybrids

* If, in addition, each pebbling configuration requires few bits to
describe, we can guess it.

Goal: Find a pebbling strategy with not so many
moves that can be described with few bits.

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each
configuration can be described by d - log s bits.

Pebbling Configuration:
- Pairs of the form (GateName, Bit)

- Bit will say if only left child is pebbled or both
- Another bit to specify whether root is pebbled

= =
- -

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each

configuration can be described by d - log s bits.
oot

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration

=)
-«

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each

configuration can be described by d - log s bits.
oot

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration

=)
-«

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each

configuration can be described by d - log s bits.
oot

-

Recursively pebble the right child of the root.
Update (RootGate,1) in configuration

=)
-«

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each

configuration can be described by d - log s bits.
oot

-

Recursively pebble the right child of the root.
Update (RootGate,1) in configuration

=)
-«

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each
configuration can be described by d - log s bits.

oot

l Put a pebble on the root
' Update Bit in configuration

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each
configuration can be described by d - log s bits.

oot

l Put a pebble on the root
' Update Bit in configuration

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each
configuration can be described by d - log s bits.

oot

H Unpabble right subtree of root
' Update (RootGate,1) in configuration

=)
-«

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each
configuration can be described by d - log s bits.

oot

H Unpabble right subtree of root
' Update (RootGate,1) in configuration

=)
-«

Proof of Adaptive Security

We give a pebbling strategy that requires 22(%) steps and each
configuration can be described by d - log s bits.

oot

Unpabble left subtree of root
' Remove (RootGate,1) from configuration

ok s soee

Proof of Adaptive Security

We give a pebbling strategy that requires 2°(?) steps and each
configuration can be described by d - log s bits.

@oot
I
I

| - —
! | l Unpabble left subtree of root
| Remove (RootGate,1) from configuration

T(d) = # of pebbling rules L(d) =size of contf.

Td)=2-2-T(d—-1) L(d)=L(d—-1)+1logs+ 2

Conclusions nan

* A new framework for proving adaptive security

* Simplified proof of adaptive security:
GSD, Constrained PRFs, Yao’s Garbled circuits

* New result for Yao’s secret sharing scheme.

* Find more applications where this framework applies
* Find better pebbling strategies

* |s there a connection in the other direction between pebbling
strategies and the security loss?
e Can we use lower bounds for pebbling strategies to devise attacks?

