
Be Adaptive, Avoid
Overcommitting

Zahra Jafargholi, Chethan Kamath, Karen Klein,
Ilan Komargodski, Krzysztof Pietrzak and Daniel Wichs

NY Crypto Day, September 2017

Selective vs. Adaptive Security

• Selective security:
• Adversary has to commit to some or all of its choices ahead of time

• Not very realistic

• Easier to get

• Adaptive security:
• Adversary can make various choices during the course of the attack

• More realistic

• Harder to get

Recent Work & Our Results

Several recent works showing that schemes actually satisfy adaptive security:

• Generalized selective decryption (GSD) [Panjwani07,FJP15]

• Constrained PRFs [FKPR14]

• Garbled circuits [JW16]

Our results:

• A framework that connects these works and allows us to present them in a
unified and simplified fashion

• New result for adaptive security of Yao's secret sharing scheme

Vague consensus that proof
techniques are related but no

clear understanding

Modular reduction
to pebbling &

guessing arguments

Very long and technical

Similar framework by
Ananth et al [TCC 2016]

The Hybrid Argument & Random Guessing

• Let 𝐺𝐿 and and 𝐺𝑅 be two adaptive game

• Let 𝐻𝐿 and 𝐻𝑅 be their selectivized versions where the adversary
commits to 𝑤 ∈ 0,1 𝑛

• Assume that there is some sequence 𝐻𝐿 = 𝐻0 , 𝐻1 , … , 𝐻ℓ = 𝐻𝑅 such
that we can show that 𝐻𝑖 and 𝐻𝑖+1 are indistinguishable.

• Then, 𝐺𝐿 and 𝐺𝑅 are indistinguishable with security loss 2𝑛ℓ.

Adaptive
Games

Selective
Games

The Main Idea Underlying Our Framework

• Devise a sequence of hybrids such that to prove their indis. it is
enough for the adversary to commit to ℎ 𝑤 ∈ 0,1 𝑚, 𝑚 ≪ 𝑛

• May be a different ℎ for every pair of hybrids

• Across all hybrids we may need to know all of 𝑤

• Security loss is 2𝑚ℓ ≪ 2𝑛ℓ

Adaptive
Games

Selective
Games

෢𝐻1,1
෢𝐻2,0

෢𝐻2,1 ෢𝐻ℓ,0
Less
Selective
Games

෢𝐻𝐿,1
෢𝐻1,0

The GSD Problem [Panjwani07]

• Have many secret keys 𝑘1 , … , 𝑘𝑛 and adversary can:
• Ask for Enc(𝑘𝑖, 𝑘𝑗) --- Encryption query

• Ask to get 𝑘𝑖 --- Corruption query

• Make a challenge on key 𝑘𝑖 --- Challenge

• Decide whether it’s real or random

• Goal: distinguish between the two cases
• No cycles

• Key is not corrupted Directly corrupted or
is reachable from such

The GSD Problem – Selective Security

• Graph and all queries are known ahead of
time

• Design 𝑛2 hybrids where in each replace
one honest encryption with a bogus one
• Each pair is indistinguishable by IND-CPA

• Security loss is 𝑛2 What about
adaptive security?

The GSD Problem – Adaptive Security

• Can reduce to the selective case by
guessing the graph (𝑛2 bits)

• Security loss is 𝑛2 ⋅ 2𝑛
2

Can prove adaptive
security without
losing so much?

Known results:

• The graph is of depth 𝑑
• Loss is 2𝑛 𝑑 [Panjwani07]

• The graph is a tree
• Loss is 𝑛3log 𝑛 [FJP15]

• The graph is a path
• Loss is 𝑛log 𝑛 [FJP15]

GSD on a PATH

• There is a path of length 𝑛 & some permutation 𝜎

• Adversaries queries are of the form Enc 𝜎 𝑖 − 1 , 𝜎 𝑖

• The challenge is for 𝑘𝜎(𝑛)

• Know the permutation => know all queries.

• Know the order in which we replace ciphertext with bogus ones.

GSD on a PATH

• Any hybrid is defined by a path where some
edges have black pebbles

• A pebble means that the corr. encryption
query is replied with bogus

• Goal is to move from no pebble to the case
that only the (𝑛 − 1, 𝑛) edge has a pebble
• This is exactly the “random” game

• Pebbling rules:
• Put/remove pebble on the source (0,1) edge
• Put/remove pebble on (𝑖, 𝑖 + 1) if (𝑖 − 1, 𝑖) has

one.

𝑬𝒏𝒄 𝒌𝝈 𝒊 ,𝒌𝝈 𝒊+𝟏 ⇒ 𝑬𝒏𝒄(𝒌𝝈 𝒊 ,𝒓)
....ץץץ

GSD on a PATH

• In the adaptive case we don’t know the
permutation.
• Need to guess the edge where there’s a pebble

• Unfortunately, # of pebbles is too large so
guessing is too expensive

Goal: Find a pebbling strategy with
not so many moves and as few as
possible pebbles.

Loss will be ℓ𝑛𝑝

ℓ - # of hybrids
𝑝 – max # of pebbles

GSD on a PATH

• Recursive pebbling:
• Pebble the middle

• Pebble the right-most vertex

• Remove the middle pebble

• log 𝑛 + 1 pebbles & 3log 𝑛 moves

Loss is ≈ 𝑛log 𝑛 ⋅ 3log 𝑛

Secret Sharing

• Dealer has a secret 𝑆

• Gives to users shares Π1, … , Π𝑛
• The shares are a probabilistic function of 𝑆

• A subset of users 𝑋 is either qualified or unqualified

• Authorized sets form a monotone access structure

Goal:

• A qualified 𝑋 can reconstruct 𝑆 based on their shares.
• An unqualified 𝑋 cannot gain any knowledge about 𝑆.

unauthorized

authorized

Perfect / Computational

Selective Security Adaptive Security

Dealer Adv

Sample 𝑆 ← {0,1}
Generate shares

Π1, … , Π𝑛
𝑖1 , … , 𝑖𝑘

Π𝑖1
, … , Π𝑖𝑘

𝑆′Adv wins if

𝑆′ = 𝑆

Dealer Adv

Sample 𝑆 ← {0,1}
Generate shares

Π1, … , Π𝑛
𝑖 ∈ [𝑛]

Π𝑖

𝑆′Adv wins if

𝑆′ = 𝑆

Choose

{𝑖1 ,… , 𝑖𝑘}

Objective
Pr Adv wins & unqualified

Our Result For Yao’s Scheme

Theorem [Adaptive Security Loss in Yao’s Scheme]:

Given an access structure described by a Boolean circuit with
fanin 𝑘in and fanout 𝑘out with 𝑠 gates and depth 𝑑,

the loss in Yao’s scheme is

2𝑑 log 𝑠+log 𝑘in ⋅ 2𝑘in
2𝑑 ⋅ 𝑘out

≈
𝑠𝑂(𝑑)

Yao’s Scheme

Assume fanin and fanout 2.

• Label the output wire with the secret

• Label all wires in the circuit from root to inputs

• The labels of the inputs are given to the corresponding parties

S

AND OR

ℓ1 ℓ2 ℓ1 ℓ2

𝑘 𝑘

1. Sample SKE key 𝑘
2. If AND:

One-time pad k
3. If OR:

Duplicate k
4. Encrypt the out

labels under k

𝑟 𝑘 ⊕ 𝑟 𝑘 𝑘

Give each party:
Enc𝑘 ℓ1
Enc𝑘 ℓ2

Proof of Selective Security

• Via a sequence of hybrids.

• Slowly replace ciphertexts with bogus ones

• We can do this for every gate for which the adv cannot compute the
corresponding key

• When we do this to output gate ⇒ shares are indep. of secret

• How do we know who are these gates?

• Selective security: adv commits to his set of parties ahead of time!

• Such a sequence exists since chosen set is unqualified

Seems inherent to know the set in order to devise such a sequence

AND OR

ℓ1 ℓ2 ℓ1 ℓ2

𝑘 𝑘

𝑟 𝑘 ⊕ 𝑟 𝑘 𝑘

Give each party:
Enc𝑘 ℓ1
Enc𝑘 ℓ2

Proof of Adaptive Security

• Devise a new sequence of hybrids.

• Hybrid 𝐻𝑖 corresponds to a pebbling configuration in which every gate
is either pebbled or not.

• Pebbled gate ⇔ bogus ciphertext

• Unpebbled gate ⇔ real ciphertext

AND AND

First Hybrid

All gates
unpebbled

Last Hybrid

Only root
gate pebbled

Shares indep.
of secret

Proof of Adaptive Security

• Hybrid 𝐻𝑖 corresponds to a pebbling configuration in which every gate
is either pebbled or not.

• From hybrid 𝐻𝑖 to hybrid 𝐻𝑖+1 via pebbling rules:
• Place/remove a pebble on AND gate for which at least one input is connected

to a pebbled gate

• Place/remove a pebble on OR gate for which all inputs are connected to
pebbled gates.

∧

∨

∧

∨

∨

∧∨

∨

∧∨∧ ∧

Proof of Adaptive Security

Main idea:

• In order to move from 𝐻𝑖 to 𝐻𝑖+1, no need to know the corrupted set,
but only the pebble configurations in these two hybrids

• If, in addition, each pebbling configuration requires few bits to
describe, we can guess it.

∧

∨

∧

∨

∨

∧∨

∨

∧∨∧ ∧

Goal: Find a pebbling strategy with not so many
moves that can be described with few bits.

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∧∨∧ ∧

Pebbling Configuration:
- Pairs of the form (GateName, Bit)

- Bit will say if only left child is pebbled or both
- Another bit to specify whether root is pebbled

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨
Recursively pebble the right child of the root.
Update (RootGate,1) in configuration

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨
Recursively pebble the right child of the root.
Update (RootGate,1) in configuration

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨
Recursively pebble the right child of the root.
Update (RootGate,1) in configuration
Put a pebble on the root
Update Bit in configuration

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨
Recursively pebble the right child of the root.
Update (RootGate,1) in configuration
Put a pebble on the root
Update Bit in configuration

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨
Recursively pebble the right child of the root.
Update (RootGate,1) in configuration
Put a pebble on the root
Update Bit in configuration
Unpabble right subtree of root
Update (RootGate,1) in configuration

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨
Recursively pebble the right child of the root.
Update (RootGate,1) in configuration
Put a pebble on the root
Update Bit in configuration
Unpabble right subtree of root
Update (RootGate,1) in configuration

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨
Recursively pebble the right child of the root.
Update (RootGate,1) in configuration
Put a pebble on the root
Update Bit in configuration
Unpabble right subtree of root
Update (RootGate,1) in configuration
Unpabble left subtree of root
Remove (RootGate,1) from configuration

Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨
Recursively pebble the right child of the root.
Update (RootGate,1) in configuration
Put a pebble on the root
Update Bit in configuration
Unpabble right subtree of root
Update (RootGate,1) in configuration
Unpabble left subtree of root
Remove (RootGate,1) from configuration

𝑇(𝑑) = # of pebbling rules

𝑇 𝑑 = 2 ⋅ 2 ⋅ 𝑇(𝑑 − 1)

𝐿(𝑑) = size of conf.

𝐿 𝑑 = 𝐿 𝑑 − 1 + log 𝑠 + 2

Conclusions

• A new framework for proving adaptive security
• Simplified proof of adaptive security:

GSD, Constrained PRFs, Yao’s Garbled circuits

• New result for Yao’s secret sharing scheme.

• Find more applications where this framework applies

• Find better pebbling strategies

• Is there a connection in the other direction between pebbling
strategies and the security loss?
• Can we use lower bounds for pebbling strategies to devise attacks?

