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Selective vs. Adaptive Security

• Selective security:
• Adversary has to commit to some or all of its choices ahead of time

• Not very realistic

• Easier to get

• Adaptive security:
• Adversary can make various choices during the course of the attack

• More realistic

• Harder to get



Recent Work & Our Results

Several recent works showing that schemes actually satisfy adaptive security:

• Generalized selective decryption (GSD) [Panjwani07,FJP15]

• Constrained PRFs [FKPR14]

• Garbled circuits [JW16]

Our results:

• A framework that connects these works and allows us to present them in a 
unified and simplified fashion

• New result for adaptive security of Yao's secret sharing scheme

Vague consensus that proof 
techniques are related but no 

clear understanding

Modular reduction 
to pebbling & 

guessing arguments

Very long and technical

Similar framework by 
Ananth et al [TCC 2016]



The Hybrid Argument & Random Guessing

• Let 𝐺𝐿 and and 𝐺𝑅 be two adaptive game

• Let 𝐻𝐿 and 𝐻𝑅 be their selectivized versions where the adversary 
commits to 𝑤 ∈ 0,1 𝑛

• Assume that there is some sequence 𝐻𝐿 = 𝐻0 , 𝐻1 , … , 𝐻ℓ = 𝐻𝑅 such 
that we can show that 𝐻𝑖 and 𝐻𝑖+1 are indistinguishable.

• Then, 𝐺𝐿 and 𝐺𝑅 are indistinguishable with security loss 2𝑛ℓ.

Adaptive 
Games

Selective 
Games



The Main Idea Underlying Our Framework

• Devise a sequence of hybrids such that to prove their indis. it is 
enough for the adversary to commit to ℎ 𝑤 ∈ 0,1 𝑚, 𝑚 ≪ 𝑛

• May be a different ℎ for every pair of hybrids

• Across all hybrids we may need to know all of 𝑤

• Security loss is 2𝑚ℓ ≪ 2𝑛ℓ

Adaptive 
Games

Selective 
Games

෢𝐻1,1
෢𝐻2,0

෢𝐻2,1 ෢𝐻ℓ,0
Less 
Selective 
Games

෢𝐻𝐿,1
෢𝐻1,0



The GSD Problem [Panjwani07]

• Have many secret keys 𝑘1 , … , 𝑘𝑛 and adversary can:
• Ask for Enc(𝑘𝑖, 𝑘𝑗) --- Encryption query

• Ask to get 𝑘𝑖 --- Corruption query

• Make a challenge on key 𝑘𝑖 --- Challenge

• Decide whether it’s real or random

• Goal: distinguish between the two cases
• No cycles

• Key is not corrupted Directly corrupted or 
is reachable from such



The GSD Problem – Selective Security

• Graph and all queries are known ahead of 
time

• Design 𝑛2 hybrids where in each replace 
one honest encryption with a bogus one
• Each pair is indistinguishable by IND-CPA

• Security loss is 𝑛2 What about 
adaptive security?



The GSD Problem – Adaptive Security

• Can reduce to the selective case by 
guessing the graph (𝑛2 bits)

• Security loss is 𝑛2 ⋅ 2𝑛
2

Can prove adaptive 
security without 
losing so much?

Known results:

• The graph is of depth 𝑑
• Loss is 2𝑛 𝑑 [Panjwani07]

• The graph is a tree
• Loss is 𝑛3log 𝑛 [FJP15]

• The graph is a path 
• Loss is 𝑛log 𝑛 [FJP15]



GSD on a PATH

• There is a path of length 𝑛 & some permutation 𝜎

• Adversaries queries are of the form Enc 𝜎 𝑖 − 1 , 𝜎 𝑖

• The challenge is for 𝑘𝜎(𝑛)

• Know the permutation => know all queries.

• Know the order in which we replace ciphertext with bogus ones.



GSD on a PATH

• Any hybrid is defined by a path where some 
edges have black pebbles

• A pebble means that the corr. encryption 
query is replied with bogus

• Goal is to move from no pebble to the case 
that only the (𝑛 − 1, 𝑛) edge has a pebble
• This is exactly the “random” game

• Pebbling rules:
• Put/remove pebble on the source (0,1) edge
• Put/remove pebble on (𝑖, 𝑖 + 1) if (𝑖 − 1, 𝑖) has 

one.

𝑬𝒏𝒄 𝒌𝝈 𝒊 ,𝒌𝝈 𝒊+𝟏 ⇒ 𝑬𝒏𝒄(𝒌𝝈 𝒊 ,𝒓)
....ץץץ



GSD on a PATH

• In the adaptive case we don’t know the 
permutation.
• Need to guess the edge where there’s a pebble

• Unfortunately, # of pebbles is too large so 
guessing is too expensive

Goal: Find a pebbling strategy with 
not so many moves and as few as 
possible pebbles. 

Loss will be ℓ𝑛𝑝

ℓ - # of hybrids
𝑝 – max # of pebbles



GSD on a PATH

• Recursive pebbling:
• Pebble the middle

• Pebble the right-most vertex

• Remove the middle pebble

• log 𝑛 + 1 pebbles & 3log 𝑛 moves

Loss is ≈ 𝑛log 𝑛 ⋅ 3log 𝑛



Secret Sharing

• Dealer has a secret 𝑆

• Gives to users shares Π1, … , Π𝑛
• The shares are a probabilistic function of 𝑆

• A subset of users 𝑋 is either qualified or unqualified

• Authorized sets form a monotone access structure

Goal:

• A qualified 𝑋 can reconstruct 𝑆 based on their shares.
• An unqualified 𝑋 cannot gain any knowledge about 𝑆.

unauthorized

authorized

Perfect / Computational



Selective Security            Adaptive Security

Dealer Adv

Sample 𝑆 ← {0,1}
Generate shares 

Π1, … , Π𝑛
𝑖1 , … , 𝑖𝑘

Π𝑖1
, … , Π𝑖𝑘

𝑆′Adv wins if 

𝑆′ = 𝑆

Dealer Adv

Sample 𝑆 ← {0,1}
Generate shares 

Π1, … , Π𝑛
𝑖 ∈ [𝑛]

Π𝑖

𝑆′Adv wins if 

𝑆′ = 𝑆

Choose

{𝑖1 ,… , 𝑖𝑘}

Objective
Pr Adv wins & unqualified



Our Result For Yao’s Scheme

Theorem [Adaptive Security Loss in Yao’s Scheme]: 

Given an access structure described by a Boolean circuit with          
fanin 𝑘in and fanout 𝑘out with 𝑠 gates and depth 𝑑,                              

the loss in Yao’s scheme is 

2𝑑 log 𝑠+log 𝑘in ⋅ 2𝑘in
2𝑑 ⋅ 𝑘out

≈
𝑠𝑂(𝑑)



Yao’s Scheme

Assume fanin and fanout 2.

• Label the output wire with the secret

• Label all wires in the circuit from root to inputs

• The labels of the inputs are given to the corresponding parties

S

AND OR

ℓ1 ℓ2 ℓ1 ℓ2

𝑘 𝑘

1. Sample SKE key 𝑘
2. If AND:

One-time pad k
3. If OR:

Duplicate k
4. Encrypt the out 

labels under k

𝑟 𝑘 ⊕ 𝑟 𝑘 𝑘

Give each party:
Enc𝑘 ℓ1
Enc𝑘 ℓ2



Proof of Selective Security

• Via a sequence of hybrids.

• Slowly replace ciphertexts with bogus ones

• We can do this for every gate for which the adv cannot compute the 
corresponding key

• When we do this to output gate ⇒ shares are indep. of secret

• How do we know who are these gates?

• Selective security: adv commits to his set of parties ahead of time!

• Such a sequence exists since chosen set is unqualified

Seems inherent to know the set in order to devise such a sequence

AND OR

ℓ1 ℓ2 ℓ1 ℓ2

𝑘 𝑘

𝑟 𝑘 ⊕ 𝑟 𝑘 𝑘

Give each party:
Enc𝑘 ℓ1
Enc𝑘 ℓ2



Proof of Adaptive Security

• Devise a new sequence of hybrids.

• Hybrid 𝐻𝑖 corresponds to a pebbling configuration in which every gate 
is either pebbled or not.

• Pebbled gate ⇔ bogus ciphertext

• Unpebbled gate ⇔ real ciphertext

AND AND

First Hybrid

All gates 
unpebbled

Last Hybrid

Only root 
gate pebbled

Shares indep. 
of secret



Proof of Adaptive Security

• Hybrid 𝐻𝑖 corresponds to a pebbling configuration in which every gate 
is either pebbled or not.

• From hybrid 𝐻𝑖 to hybrid 𝐻𝑖+1 via pebbling rules:
• Place/remove a pebble on AND gate for which at least one input is connected 

to a pebbled gate

• Place/remove a pebble on OR gate for which all inputs are connected to 
pebbled gates.

∧

∨

∧

∨

∨

∧∨

∨

∧∨∧ ∧



Proof of Adaptive Security

Main idea:

• In order to move from 𝐻𝑖 to 𝐻𝑖+1, no need to know the corrupted set, 
but only the pebble configurations in these two hybrids

• If, in addition, each pebbling configuration requires few bits to 
describe, we can guess it. 

∧

∨

∧

∨

∨

∧∨

∨

∧∨∧ ∧

Goal: Find a pebbling strategy with not so many 
moves that can be described with few bits. 



Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each 
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∧∨∧ ∧

Pebbling Configuration:
- Pairs of the form (GateName, Bit)

- Bit will say if only left child is pebbled or both
- Another bit to specify whether root is pebbled



Proof of Adaptive Security

We give a pebbling strategy that requires 2𝑂(𝑑) steps and each 
configuration can be described by 𝑑 ⋅ log 𝑠 bits.

∧

∨

∧

∨

∨

∧∨

∨

∨∧ ∧

∨
Root

Recursively pebble the left child of the root.
Add (RootGate,0) to configuration∨ ∨
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𝑇(𝑑) = # of pebbling rules

𝑇 𝑑 = 2 ⋅ 2 ⋅ 𝑇(𝑑 − 1)

𝐿(𝑑) = size of conf.

𝐿 𝑑 = 𝐿 𝑑 − 1 + log 𝑠 + 2



Conclusions

• A new framework for proving adaptive security
• Simplified proof of adaptive security:

GSD, Constrained PRFs, Yao’s Garbled circuits

• New result for Yao’s secret sharing scheme.

• Find more applications where this framework applies

• Find better pebbling strategies

• Is there a connection in the other direction between pebbling 
strategies and the security loss?
• Can we use lower bounds for pebbling strategies to devise attacks?


