Be Adaptive, Avoid Overcommitting

Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof Pietrzak and Daniel Wichs

NY Crypto Day, September 2017

Selective vs. Adaptive Security

• Selective security:

- Adversary has to commit to some or all of its choices ahead of time
- Not very realistic
- Easier to get

• Adaptive security:

- Adversary can make various choices during the course of the attack
- More realistic
- Harder to get

Recent Work & Our Results

Modular reduction to pebbling & guessing arguments

Several recent works showing that schemes actually satisfy adaptive security:

- Generalized selective decryption (GSD) [Panjwani07,FJP15]
- Constrained PRFs [FKPR14]
- Garbled circuits [JW16]

Similar framework by Ananth et al [TCC 2016] Vague consensus that proof techniques are related but no clear understanding

- A framework that connects these works and allows us to present them in a unified and simplified fashion
- New result for adaptive security of Yao's secret sharing scheme

Very long and technical

The Hybrid Argument & Random Guessing

- Let G_L and and G_R be two adaptive game
- Let H_L and H_R be their *selectivized* versions where the adversary commits to $w \in \{0,1\}^n$
- Assume that there is some sequence $H_L = H_0, H_1, \dots, H_{\ell} = H_R$ such that we can show that H_i and H_{i+1} are indistinguishable.
- Then, G_L and G_R are indistinguishable with security loss $2^n \ell$.

The Main Idea Underlying Our Framework

- Devise a sequence of hybrids such that to prove their indis. it is enough for the adversary to commit to $h(w) \in \{0,1\}^m$, $m \ll n$
 - May be a different *h* for every pair of hybrids
 - Across all hybrids we may need to know all of w
- Security loss is $2^m \ell \ll 2^n \ell$

The GSD Problem [Panjwani07]

- Have many secret keys k_1, \ldots, k_n and adversary can:
 - Ask for $Enc(k_i, k_j)$ --- Encryption query
 - Ask to get k_i
 - Make a challenge on key k_i --- Challenge
 - Decide whether it's real or random
- Goal: distinguish between the two cases
 - No cycles
 - Key is not corrupted -

Directly corrupted or is reachable from such

--- Corruption query

The GSD Problem – Selective Security

- Graph and all queries are known ahead of time
- Design n^2 hybrids where in each replace one honest encryption with a bogus one
 - Each pair is indistinguishable by IND-CPA
- Security loss is n^2

What about adaptive security?

The GSD Problem – Adaptive Security

- Can reduce to the selective case by guessing the graph (n^2 bits)
- Security loss is $n^2 \cdot 2^{n^2}$

Known results:

- The graph is of depth *d*
 - Loss is $(2n)^d$ [Panjwani07]
- The graph is a tree
 - Loss is $n^{3\log n}$ [FJP15]
- The graph is a path
 - Loss is $n^{\log n}$ [FJP15]

Can prove adaptive security without losing so much?

GSD on a PATH

- There is a path of length n & some permutation σ
- Adversaries queries are of the form $Enc(\sigma(i-1), \sigma(i))$
- The challenge is for $k_{\sigma(n)}$
- Know the permutation => know all queries.
- Know the order in which we replace ciphertext with bogus ones.

$\bigcirc \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7 \longrightarrow 8$

GSD on a PATH

- Any hybrid is defined by a path where some edges have black pebbles
- A pebble means that the corr. encryption query is replied with bogus

 $Enc(k_{\sigma(i)},k_{\sigma(i+1)}) \Rightarrow Enc(k_{\sigma(i)},r)$

- Goal is to move from no pebble to the case that only the (n 1, n) edge has a pebble
 - This is exactly the "random" game
- Pebbling rules:
 - Put/remove pebble on the source (0,1) edge
 - Put/remove pebble on (*i*, *i* + 1) if (*i* − 1, *i*) has one.

 $0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7 \longrightarrow 8$

. . .

GSD on a PATH

- In the adaptive case we don't know the permutation.
 - Need to guess the edge where there's a pebble
- Unfortunately, # of pebbles is too large so guessing is too expensive

Goal: Find a pebbling strategy with not so many moves and as few as possible pebbles.

Loss will be ℓn^p ℓ - # of hybrids – max # of pebbles

(2) $(0) \rightarrow (1) \rightarrow (2) \rightarrow (3)$ **→(**4) $(0) \leftrightarrow (1) \leftrightarrow (2) \leftrightarrow (3) \leftrightarrow (4) \rightarrow (5)$ **→(**6) $(0 \rightarrow (1 \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6)$ $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$ →(7)- $(0 \rightarrow 1) \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8$ $(0) \bullet (1) \bullet (2) \bullet (3) \bullet (4) \bullet (5) \bullet (6) \bullet (7) \bullet (8)$ $(0 \rightarrow 1) \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$ $\rightarrow (7) \rightarrow (8)$ $(0) \longrightarrow (1) \longrightarrow (2) \longrightarrow (3) \longrightarrow (4) \longrightarrow (5)$ →(6)- $\rightarrow (4)$ $(0) \rightarrow (1) \rightarrow (2) \rightarrow (3)$ →(5) **≯(**6) $(0) \rightarrow (1) \rightarrow (2)$)(3) **→(**4) (5)3

GSD on a PATH

- Recursive pebbling:
 - Pebble the middle
 - Pebble the right-most vertex
 - Remove the middle pebble
- $\log n + 1$ pebbles & $3^{\log n}$ moves

Loss is $\approx n^{\log n} \cdot 3^{\log n}$

(0)- $\rightarrow (1)$ (7)-•+(8) **→**2)**-** $(0) \rightarrow (1)$ →(7)-**●**→(8) ━→(4)-(6)- $(0) \rightarrow (1) \rightarrow (2)$ →(5 ≻ $\rightarrow (7) \rightarrow (8)$ $(1) \rightarrow (2) \rightarrow (3) \rightarrow (4)$ (6)(0)- $\rightarrow (1)$ **→**(2)-→(3)-**●**→(4)-(7)-€→(8)) (2)-€)(3) $\rightarrow (2) \rightarrow (3) \rightarrow (4) \bigcirc$ →(1)-(7)-•>(8) (0)- $\rightarrow (1) \rightarrow (2)$ →(6)— →(7)-●→(8) $(0) \rightarrow (1) \rightarrow (2)$)(3)-(4)-→(5)- $\rightarrow (1)$ (0)- $\rightarrow (3) \rightarrow (4) \rightarrow (5)$ (2) $(0) \rightarrow (1)$ **≁**(4)-*****(7)**-€***(8) (3) (5)-**≯(**6)-5 **∀**(7)**-●→**(8) (0)2 **→(** 3 **)-●→(** 4)

¥(5 ; $(0) \rightarrow (1)$ **→(**2)-→(3)-→(4) $(0) \rightarrow (1) \rightarrow (2)$ →(3)-→(4) **→(**5) $\rightarrow (5)$ $\rightarrow (1) \rightarrow (2)$ **→(**3)-(0)→(4)-→(6) \rightarrow (6)-→(7)-(0) - $0 \longrightarrow 1 \xrightarrow{\bullet} 2 \xrightarrow{\bullet} 3 \xrightarrow{\bullet} 4 \longrightarrow 5 \xrightarrow{\bullet} 6$ →(7)- $\rightarrow 1 \quad \textcircled{2} \quad \overrightarrow{3} \quad \textcircled{4} \quad \overrightarrow{5} \quad \overrightarrow{6}$ (0)-→(7)- $\rightarrow (7)$ $\bigcirc \bullet \bullet 1 \bullet \bullet 2 \to 3 \bullet \bullet 4 \to 5 \to 6 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 (0) \rightarrow (1)$ →(7)-→(6)- $\rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 -$ (0)- $\rightarrow (1)$ →(6)-→(7)- $\rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6)$ →(7)-(0)→(1) **→**2)- \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6)-→(7)-→(7)- \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6)- \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6) \rightarrow (7) \rightarrow (8) $\rightarrow (5) \oplus (6) \oplus (7) \oplus (8)$ $\rightarrow (5) \rightarrow (6)$ $\rightarrow (7) \rightarrow (8)$ \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6)-→(7)-**●→**(8) **≯(**6)-

Secret Sharing

- Dealer has a secret S
- Gives to users shares Π_1, \ldots, Π_n
 - The shares are a probabilistic function of *S*
- A subset of users X is either **qualified** or **unqualified**
- Authorized sets form a monotone access structure

Goal:

- A qualified X can reconstruct S based on their shares.
- An unqualified X cannot gain any knowledge about S.

Perfect / Computational

Our Result For Yao's Scheme

Theorem [Adaptive Security Loss in Yao's Scheme]:

Given an access structure described by a Boolean circuit with fanin k_{in} and fanout k_{out} with s gates and depth d, the loss in Yao's scheme is

$$2^{d(\log s + \log k_{in})} \cdot (2k_{in})^{2d} \cdot k_{out}$$

$$\approx S^{O(d)}$$

Yao's Scheme

Assume fanin and fanout 2.

- Label the output wire with the secret
- Label all wires in the circuit from root to inputs
- The labels of the inputs are given to the corresponding parties

Via a sequence of hybrids.

• Slowly replace ciphertexts with bogus ones

Proof of Selective Security

• We can do this for every gate for which the adv cannot compute the corresponding key

Give each party:

 $\operatorname{Enc}_k(\ell_1)$

 $\operatorname{Enc}_k(\ell_2)$

 ℓ_1

AND

 ℓ_2

k

 $k \oplus r$

 ℓ_1

k

OR

l2

k

k

- When we do this to output gate \Rightarrow shares are indep. of secret
- How do we know who are these gates?
- Selective security: adv commits to his set of parties ahead of time!

Seems inherent to know the set in order to devise such a sequence

• Such a sequence exists since chosen set is unqualified

- Devise a new sequence of hybrids.
- Hybrid *H_i* corresponds to a *pebbling configuration* in which every gate is either pebbled or not.

- Hybrid *H_i* corresponds to a *pebbling configuration* in which every gate is either pebbled or not.
- From hybrid H_i to hybrid H_{i+1} via pebbling rules:
 - Place/remove a pebble on AND gate for which at least one input is connected to a pebbled gate
 - Place/remove a pebble on OR gate for which **all** inputs are connected to pebbled gates.

Main idea:

- In order to move from H_i to H_{i+1} , no need to know the corrupted set, but only the *pebble configurations* in these two hybrids
- If, in addition, each pebbling configuration requires *few* bits to describe, we can guess it.

Goal: Find a pebbling strategy with not so many moves that can be **described** with few bits.

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

Pebbling Configuration:

- Pairs of the form (GateName, Bit)
 - Bit will say if only left child is pebbled or both
- Another bit to specify whether root is pebbled

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

Recursively pebble the left child of the root. Add (RootGate,0) to configuration

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

Recursively pebble the left child of the root. Add (RootGate,0) to configuration

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

Recursively pebble the right child of the root. Update (RootGate, 1) in configuration

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

Recursively pebble the right child of the root. Update (RootGate, 1) in configuration

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

Put a pebble on the root Update Bit in configuration

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

Put a pebble on the root Update Bit in configuration

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

Unpabble right subtree of root Update (RootGate,1) in configuration

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

Unpabble right subtree of root Update (RootGate,1) in configuration

Root

V

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

We give a pebbling strategy that requires $2^{O(d)}$ steps and each configuration can be described by $d \cdot \log s$ bits.

T(d) = # of pebbling rules $T(d) = 2 \cdot 2 \cdot T(d - 1)$

$$L(d) = \text{size of conf.}$$

$$L(d) = L(d-1) + \log s + 2$$

Conclusions

Thank You!

- A new framework for proving adaptive security
 - Simplified proof of adaptive security: GSD, Constrained PRFs, Yao's Garbled circuits
 - New result for Yao's secret sharing scheme.
- Find more applications where this framework applies
- Find better pebbling strategies
- Is there a connection in the other direction between pebbling strategies and the security loss?
 - Can we use lower bounds for pebbling strategies to devise attacks?